3.3.62 \(\int \frac {\tanh (x)}{(a+b \tanh ^4(x))^{3/2}} \, dx\) [262]

3.3.62.1 Optimal result
3.3.62.2 Mathematica [A] (verified)
3.3.62.3 Rubi [A] (verified)
3.3.62.4 Maple [C] (verified)
3.3.62.5 Fricas [B] (verification not implemented)
3.3.62.6 Sympy [F]
3.3.62.7 Maxima [F]
3.3.62.8 Giac [F]
3.3.62.9 Mupad [F(-1)]

3.3.62.1 Optimal result

Integrand size = 15, antiderivative size = 74 \[ \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{3/2}} \, dx=\frac {\text {arctanh}\left (\frac {a+b \tanh ^2(x)}{\sqrt {a+b} \sqrt {a+b \tanh ^4(x)}}\right )}{2 (a+b)^{3/2}}-\frac {a-b \tanh ^2(x)}{2 a (a+b) \sqrt {a+b \tanh ^4(x)}} \]

output
1/2*arctanh((a+b*tanh(x)^2)/(a+b)^(1/2)/(a+b*tanh(x)^4)^(1/2))/(a+b)^(3/2) 
+1/2*(-a+b*tanh(x)^2)/a/(a+b)/(a+b*tanh(x)^4)^(1/2)
 
3.3.62.2 Mathematica [A] (verified)

Time = 0.54 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.99 \[ \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{3/2}} \, dx=\frac {1}{2} \left (\frac {\text {arctanh}\left (\frac {a+b \tanh ^2(x)}{\sqrt {a+b} \sqrt {a+b \tanh ^4(x)}}\right )}{(a+b)^{3/2}}-\frac {a-b \tanh ^2(x)}{a (a+b) \sqrt {a+b \tanh ^4(x)}}\right ) \]

input
Integrate[Tanh[x]/(a + b*Tanh[x]^4)^(3/2),x]
 
output
(ArcTanh[(a + b*Tanh[x]^2)/(Sqrt[a + b]*Sqrt[a + b*Tanh[x]^4])]/(a + b)^(3 
/2) - (a - b*Tanh[x]^2)/(a*(a + b)*Sqrt[a + b*Tanh[x]^4]))/2
 
3.3.62.3 Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.04, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {3042, 26, 4153, 26, 1577, 496, 25, 27, 488, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {i \tan (i x)}{\left (a+b \tan (i x)^4\right )^{3/2}}dx\)

\(\Big \downarrow \) 26

\(\displaystyle -i \int \frac {\tan (i x)}{\left (b \tan (i x)^4+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle -i \int \frac {i \tanh (x)}{\left (1-\tanh ^2(x)\right ) \left (b \tanh ^4(x)+a\right )^{3/2}}d\tanh (x)\)

\(\Big \downarrow \) 26

\(\displaystyle \int \frac {\tanh (x)}{\left (1-\tanh ^2(x)\right ) \left (a+b \tanh ^4(x)\right )^{3/2}}d\tanh (x)\)

\(\Big \downarrow \) 1577

\(\displaystyle \frac {1}{2} \int \frac {1}{\left (1-\tanh ^2(x)\right ) \left (b \tanh ^4(x)+a\right )^{3/2}}d\tanh ^2(x)\)

\(\Big \downarrow \) 496

\(\displaystyle \frac {1}{2} \left (-\frac {\int -\frac {a}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^4(x)+a}}d\tanh ^2(x)}{a (a+b)}-\frac {a-b \tanh ^2(x)}{a (a+b) \sqrt {a+b \tanh ^4(x)}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {a}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^4(x)+a}}d\tanh ^2(x)}{a (a+b)}-\frac {a-b \tanh ^2(x)}{a (a+b) \sqrt {a+b \tanh ^4(x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^4(x)+a}}d\tanh ^2(x)}{a+b}-\frac {a-b \tanh ^2(x)}{a (a+b) \sqrt {a+b \tanh ^4(x)}}\right )\)

\(\Big \downarrow \) 488

\(\displaystyle \frac {1}{2} \left (-\frac {\int \frac {1}{-\tanh ^4(x)+a+b}d\frac {-b \tanh ^2(x)-a}{\sqrt {b \tanh ^4(x)+a}}}{a+b}-\frac {a-b \tanh ^2(x)}{a (a+b) \sqrt {a+b \tanh ^4(x)}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (-\frac {\text {arctanh}\left (\frac {-a-b \tanh ^2(x)}{\sqrt {a+b} \sqrt {a+b \tanh ^4(x)}}\right )}{(a+b)^{3/2}}-\frac {a-b \tanh ^2(x)}{a (a+b) \sqrt {a+b \tanh ^4(x)}}\right )\)

input
Int[Tanh[x]/(a + b*Tanh[x]^4)^(3/2),x]
 
output
(-(ArcTanh[(-a - b*Tanh[x]^2)/(Sqrt[a + b]*Sqrt[a + b*Tanh[x]^4])]/(a + b) 
^(3/2)) - (a - b*Tanh[x]^2)/(a*(a + b)*Sqrt[a + b*Tanh[x]^4]))/2
 

3.3.62.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 496
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(-(a*d + b*c*x))*(c + d*x)^(n + 1)*((a + b*x^2)^(p + 1)/(2*a*(p + 1)*(b*c^2 
 + a*d^2))), x] + Simp[1/(2*a*(p + 1)*(b*c^2 + a*d^2))   Int[(c + d*x)^n*(a 
 + b*x^2)^(p + 1)*Simp[b*c^2*(2*p + 3) + a*d^2*(n + 2*p + 3) + b*c*d*(n + 2 
*p + 4)*x, x], x], x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[p, -1] && IntQuad 
raticQ[a, 0, b, c, d, n, p, x]
 

rule 1577
Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] 
 :> Simp[1/2   Subst[Int[(d + e*x)^q*(a + c*x^2)^p, x], x, x^2], x] /; Free 
Q[{a, c, d, e, p, q}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.3.62.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3.

Time = 0.68 (sec) , antiderivative size = 431, normalized size of antiderivative = 5.82

method result size
derivativedivides \(\frac {b \left (\frac {\tanh \left (x \right )^{3}}{4 a \left (a +b \right )}+\frac {\tanh \left (x \right )^{2}}{4 a \left (a +b \right )}+\frac {\tanh \left (x \right )}{4 a \left (a +b \right )}-\frac {1}{4 \left (a +b \right ) b}\right )}{\sqrt {\left (\tanh \left (x \right )^{4}+\frac {a}{b}\right ) b}}-\frac {-\frac {\operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{2 \sqrt {a +b}}-\frac {\sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, -\frac {i \sqrt {a}}{\sqrt {b}}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}}}{2 \left (a +b \right )}+\frac {b \left (-\frac {\tanh \left (x \right )^{3}}{4 a \left (a +b \right )}+\frac {\tanh \left (x \right )^{2}}{4 a \left (a +b \right )}-\frac {\tanh \left (x \right )}{4 a \left (a +b \right )}-\frac {1}{4 \left (a +b \right ) b}\right )}{\sqrt {\left (\tanh \left (x \right )^{4}+\frac {a}{b}\right ) b}}-\frac {-\frac {\operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{2 \sqrt {a +b}}+\frac {\sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, -\frac {i \sqrt {a}}{\sqrt {b}}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}}}{2 \left (a +b \right )}\) \(431\)
default \(\frac {b \left (\frac {\tanh \left (x \right )^{3}}{4 a \left (a +b \right )}+\frac {\tanh \left (x \right )^{2}}{4 a \left (a +b \right )}+\frac {\tanh \left (x \right )}{4 a \left (a +b \right )}-\frac {1}{4 \left (a +b \right ) b}\right )}{\sqrt {\left (\tanh \left (x \right )^{4}+\frac {a}{b}\right ) b}}-\frac {-\frac {\operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{2 \sqrt {a +b}}-\frac {\sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, -\frac {i \sqrt {a}}{\sqrt {b}}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}}}{2 \left (a +b \right )}+\frac {b \left (-\frac {\tanh \left (x \right )^{3}}{4 a \left (a +b \right )}+\frac {\tanh \left (x \right )^{2}}{4 a \left (a +b \right )}-\frac {\tanh \left (x \right )}{4 a \left (a +b \right )}-\frac {1}{4 \left (a +b \right ) b}\right )}{\sqrt {\left (\tanh \left (x \right )^{4}+\frac {a}{b}\right ) b}}-\frac {-\frac {\operatorname {arctanh}\left (\frac {2 b \tanh \left (x \right )^{2}+2 a}{2 \sqrt {a +b}\, \sqrt {a +b \tanh \left (x \right )^{4}}}\right )}{2 \sqrt {a +b}}+\frac {\sqrt {1-\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, \tanh \left (x \right )^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (\tanh \left (x \right ) \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, -\frac {i \sqrt {a}}{\sqrt {b}}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {a +b \tanh \left (x \right )^{4}}}}{2 \left (a +b \right )}\) \(431\)

input
int(tanh(x)/(a+b*tanh(x)^4)^(3/2),x,method=_RETURNVERBOSE)
 
output
b*(1/4/a/(a+b)*tanh(x)^3+1/4/a/(a+b)*tanh(x)^2+1/4/a/(a+b)*tanh(x)-1/4/(a+ 
b)/b)/((tanh(x)^4+a/b)*b)^(1/2)-1/2/(a+b)*(-1/2/(a+b)^(1/2)*arctanh(1/2*(2 
*b*tanh(x)^2+2*a)/(a+b)^(1/2)/(a+b*tanh(x)^4)^(1/2))-1/(I/a^(1/2)*b^(1/2)) 
^(1/2)*(1-I/a^(1/2)*b^(1/2)*tanh(x)^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*tanh(x)^ 
2)^(1/2)/(a+b*tanh(x)^4)^(1/2)*EllipticPi(tanh(x)*(I/a^(1/2)*b^(1/2))^(1/2 
),-I*a^(1/2)/b^(1/2),(-I/a^(1/2)*b^(1/2))^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)) 
)+b*(-1/4/a/(a+b)*tanh(x)^3+1/4/a/(a+b)*tanh(x)^2-1/4/a/(a+b)*tanh(x)-1/4/ 
(a+b)/b)/((tanh(x)^4+a/b)*b)^(1/2)-1/2/(a+b)*(-1/2/(a+b)^(1/2)*arctanh(1/2 
*(2*b*tanh(x)^2+2*a)/(a+b)^(1/2)/(a+b*tanh(x)^4)^(1/2))+1/(I/a^(1/2)*b^(1/ 
2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*tanh(x)^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*tanh( 
x)^2)^(1/2)/(a+b*tanh(x)^4)^(1/2)*EllipticPi(tanh(x)*(I/a^(1/2)*b^(1/2))^( 
1/2),-I*a^(1/2)/b^(1/2),(-I/a^(1/2)*b^(1/2))^(1/2)/(I/a^(1/2)*b^(1/2))^(1/ 
2)))
 
3.3.62.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1935 vs. \(2 (63) = 126\).

Time = 0.48 (sec) , antiderivative size = 3914, normalized size of antiderivative = 52.89 \[ \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(tanh(x)/(a+b*tanh(x)^4)^(3/2),x, algorithm="fricas")
 
output
[1/4*(((a^2 + a*b)*cosh(x)^8 + 8*(a^2 + a*b)*cosh(x)*sinh(x)^7 + (a^2 + a* 
b)*sinh(x)^8 + 4*(a^2 - a*b)*cosh(x)^6 + 4*(7*(a^2 + a*b)*cosh(x)^2 + a^2 
- a*b)*sinh(x)^6 + 8*(7*(a^2 + a*b)*cosh(x)^3 + 3*(a^2 - a*b)*cosh(x))*sin 
h(x)^5 + 6*(a^2 + a*b)*cosh(x)^4 + 2*(35*(a^2 + a*b)*cosh(x)^4 + 30*(a^2 - 
 a*b)*cosh(x)^2 + 3*a^2 + 3*a*b)*sinh(x)^4 + 8*(7*(a^2 + a*b)*cosh(x)^5 + 
10*(a^2 - a*b)*cosh(x)^3 + 3*(a^2 + a*b)*cosh(x))*sinh(x)^3 + 4*(a^2 - a*b 
)*cosh(x)^2 + 4*(7*(a^2 + a*b)*cosh(x)^6 + 15*(a^2 - a*b)*cosh(x)^4 + 9*(a 
^2 + a*b)*cosh(x)^2 + a^2 - a*b)*sinh(x)^2 + a^2 + a*b + 8*((a^2 + a*b)*co 
sh(x)^7 + 3*(a^2 - a*b)*cosh(x)^5 + 3*(a^2 + a*b)*cosh(x)^3 + (a^2 - a*b)* 
cosh(x))*sinh(x))*sqrt(a + b)*log(((a^2 + 2*a*b + b^2)*cosh(x)^8 + 8*(a^2 
+ 2*a*b + b^2)*cosh(x)*sinh(x)^7 + (a^2 + 2*a*b + b^2)*sinh(x)^8 + 4*(a^2 
- b^2)*cosh(x)^6 + 4*(7*(a^2 + 2*a*b + b^2)*cosh(x)^2 + a^2 - b^2)*sinh(x) 
^6 + 8*(7*(a^2 + 2*a*b + b^2)*cosh(x)^3 + 3*(a^2 - b^2)*cosh(x))*sinh(x)^5 
 + 2*(3*a^2 + 2*a*b + 3*b^2)*cosh(x)^4 + 2*(35*(a^2 + 2*a*b + b^2)*cosh(x) 
^4 + 30*(a^2 - b^2)*cosh(x)^2 + 3*a^2 + 2*a*b + 3*b^2)*sinh(x)^4 + 8*(7*(a 
^2 + 2*a*b + b^2)*cosh(x)^5 + 10*(a^2 - b^2)*cosh(x)^3 + (3*a^2 + 2*a*b + 
3*b^2)*cosh(x))*sinh(x)^3 + 4*(a^2 - b^2)*cosh(x)^2 + 4*(7*(a^2 + 2*a*b + 
b^2)*cosh(x)^6 + 15*(a^2 - b^2)*cosh(x)^4 + 3*(3*a^2 + 2*a*b + 3*b^2)*cosh 
(x)^2 + a^2 - b^2)*sinh(x)^2 + sqrt(2)*((a + b)*cosh(x)^4 + 4*(a + b)*cosh 
(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*...
 
3.3.62.6 Sympy [F]

\[ \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{3/2}} \, dx=\int \frac {\tanh {\left (x \right )}}{\left (a + b \tanh ^{4}{\left (x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(tanh(x)/(a+b*tanh(x)**4)**(3/2),x)
 
output
Integral(tanh(x)/(a + b*tanh(x)**4)**(3/2), x)
 
3.3.62.7 Maxima [F]

\[ \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{3/2}} \, dx=\int { \frac {\tanh \left (x\right )}{{\left (b \tanh \left (x\right )^{4} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(tanh(x)/(a+b*tanh(x)^4)^(3/2),x, algorithm="maxima")
 
output
integrate(tanh(x)/(b*tanh(x)^4 + a)^(3/2), x)
 
3.3.62.8 Giac [F]

\[ \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{3/2}} \, dx=\int { \frac {\tanh \left (x\right )}{{\left (b \tanh \left (x\right )^{4} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(tanh(x)/(a+b*tanh(x)^4)^(3/2),x, algorithm="giac")
 
output
integrate(tanh(x)/(b*tanh(x)^4 + a)^(3/2), x)
 
3.3.62.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\tanh (x)}{\left (a+b \tanh ^4(x)\right )^{3/2}} \, dx=\int \frac {\mathrm {tanh}\left (x\right )}{{\left (b\,{\mathrm {tanh}\left (x\right )}^4+a\right )}^{3/2}} \,d x \]

input
int(tanh(x)/(a + b*tanh(x)^4)^(3/2),x)
 
output
int(tanh(x)/(a + b*tanh(x)^4)^(3/2), x)